How are we doing? Do we need to re-think?
WOUND BED PREPARATION

“chance favors the prepared mind”

Louis Pasteur

• Wound Cleansing
• Wound Debridement
• Bacterial Control
WOUND CLEANSING

Hey! That's good scotch!

It's good for cleaning wounds!

I have a tongue wound!

Me too!
ADEQUATE WOUND CLEANSING
CHALLENGES OF OBTAINING A CLEAN WOUND

- Historical vs modern threats to wound healing
- Availability of adequate solutions
 - Avoidance of toxicity
 - Risk / Benefit
 - Clean vs. Disinfect
 - Home vs facility vs clinic setting
- Pain and Trauma
 - History of need to avoid; avoidance of pain prevails
INTERNATIONAL WOUND CARE SURVEY

- Conducted in eleven countries in Europe and North America
- Identify practitioners primary consideration in their approach to pain and tissue trauma at dressing changes
- 14,657 questionnaires distributed
 - 3,918 responded (27%)

Moffatt CJ, Franks PJ And Hollinworth H. Understanding wound pain and trauma: an international Perspective. EWMA position document on “Pain at wound dressing changes 2002.”
13% Preventing surrounding skin damages
34% Preventing trauma to the wound bed
22% Preventing the spread of infection
25% Preventing pain to the patient
6% Other / missing
THE TOP TWO ISSUES IN WOUND HEALING

- Preventing trauma to the wound surface and surrounding skin
- Preventing pain to the patient during dressing change(s)
PLAN FOR THE PAIN

- Inpatient pre-medicate patient
- Provide medication to patient
 - Take pain medication prior to leaving home if not driving
- Topical anesthetics can help
 - Know the mechanism of action
 - Prescriptions for patients and community care/long term care nurses
WOUND CLEANSING
So.....

We have to decide......
OR BETTER....
WOUND CLEANSING

- Wound cleansing is the use of fluids to gently remove loosely adherent contaminants and devitalized material from the wound surface.

WOUND CLEANSING

- Integral part of wound bed preparation
 - Removes surface debris
 - Reduces bacterial load
 - Mitigates biofilm activity
- Challenge is finding the right balance
 - How to clean
 - What to clean with
HOW TO CLEAN

- Debridement
 - Clearly a fail-safe way to get a wound clean
 - Clean again after debridement

- Cleansing
 - Irrigation
 - Streaming
 - Continuous pulsed irrigation
 - Pulsatile lavage
 - Monofilament/microfiber cleansing
 - Gauze cleansing
HOW TO CLEAN

- Debridement
 - Clearly a fail-safe way to get a wound clean
 - Clean again after debridement

- Cleansing
 - Irrigation
 - Streaming
 - Continuous pulsed irrigation
 - Pulsatile lavage
 - Monofilament/microfiber cleansing
 - Gauze cleansing
IRRIGATION - STREAMING

- Choice of solution: We’ll get to that
- Method of Delivery – patient and setting dependent
 - Pouring
 - Syringes
 - Commercial devices
- Volume of Solution
 - 50-100 ml recommended
PRESSURIZED CLEANSING

35 cc- 19 gauge?
WHAT ABOUT THE 35 ML SYRINGE, 19 GAUGE ANGIOCATH RECOMMENDATION?

- Ideal pressures for irrigating trauma wounds
ADJUSTING FOR THE PSI

- 35 ml and 19 G angiocath delivered 8 psi, 20 ml syringe and 18 gauge angiocath delivered 12 psi
- Larger syringe, lower pressures. Larger angiocath, higher pressures.

<table>
<thead>
<tr>
<th>Syringe MLs</th>
<th>Needle/Angio Gauge</th>
<th>PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>35</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>30</td>
</tr>
</tbody>
</table>

Figure 1: Experimental assessment of pressure generated
IRRIGATION DEVICES
POWERED DEVICES

Pulsatile lavage

Non-contact low frequency ultrasound

Contact low frequency ultrasound
A WORD ABOUT PERSONAL PROTECTIVE EQUIPMENT

- Should be worn with any procedure which may result in aerosolization of bacteria
Gauze Scrubbing

- Likely more painful
- Less effective on bacterial
- Less expensive
- Consider topical analgesia
MICROFIBER DEBRIDEMENT PAD

- Debridement Pad consists of microfibres that debride and an absorbent backing layer
- Pad is moistened and used in a circular motion
- Debridement Pad frees the wound from coatings and dead cell residues (debris) and absorbs excess exudates. Intact tissue is spared.
- Works well with scaly and necrotic wound surfaces

Photo used with permission, B. Braun
MICROFIBER DEBRIDEMENT PAD

Photos used with permission, B. Braun
MONOFILAMENT PAD

- Polyester monofilaments trap exudate and debris
- Thoroughly moisten and clean in circular motion
- Ideal for less experienced providers
- Necrosis, debris, bacteria, etc. is lifted from wound bed and trapped in fibers of device relatively painlessly
WOUND CLEANSING – SOLUTIONS

- Commercial cleansers
 - Enhanced wound cleaning due to surface active agents, which break the bonds of foreign bodies on wound surface
 - Strength of their chemical reactivity directly proportional to their cleansing capacity and toxicity to cells
 - May be best suited for wounds with adherent cellular debris and biofilm
 - Typically contain preservatives to extend effective shelf life
 - Can be highly cytotoxic to healthy cells and granulating tissue (skin cleansers)

Wolcott R, Fletcher J. The role of wound cleansing in the management of wounds. Wounds International 2014. 1(1)
WHAT TO CLEAN WITH?

- **Isotonic Saline (0.9%)**
 - On clean uncomplicated wound usually the right answer on test 😊
 - Must be used with enough psi to make a difference
 - No impact on microbes and biofilm
 - Best used with monofilament, microfiber or gauze

- **Potable water**
 - 2012 Cochrane Review concluded no difference in healing or infection rates in using saline vs tap water
 - Concern of water borne pathogens such as pseudomonas, and known growth of biofilm in pipes

Cleansing Solutions

<table>
<thead>
<tr>
<th>Solution</th>
<th>Type</th>
<th>Cytotoxicity</th>
<th>Effect on biofilm</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterile normal saline</td>
<td>Isotonic</td>
<td>None</td>
<td>None</td>
<td>Sterile, non-antiseptic solution[23]</td>
</tr>
<tr>
<td>Sterile water</td>
<td>Hypotonic</td>
<td>None</td>
<td>None</td>
<td>Sterile, non-antiseptic solution[23]</td>
</tr>
<tr>
<td>Potable tap water</td>
<td>Varies in content</td>
<td>Unknown/variable</td>
<td>None</td>
<td>Not sterile[23]</td>
</tr>
<tr>
<td>Polyhexamethylene biguanide (PHMB)</td>
<td>Surfactant</td>
<td>Low to none[23]</td>
<td>Surfactant qualities disrupt biofilm attachments[21, 106]</td>
<td>Available in gel and irrigation preparations that can be used together or separately</td>
</tr>
<tr>
<td>Octenidine dihydrochloride (OCT)</td>
<td>Surfactant</td>
<td>In vitro tests show high toxicity[107]</td>
<td>Prevents formation of new biofilm for at least 3 hours[108]</td>
<td>Available in gel and irrigation preparations that can be used together or separately</td>
</tr>
<tr>
<td>Super-oxidised with hypochlorous acid (HOCL) and sodium hypochlorite (NaOCl)</td>
<td>Antiseptic</td>
<td>May vary depending on concentrations</td>
<td>Penetrates biofilm rapidly, killing formations from within[103]</td>
<td>Purported to provide desloughing and antimicrobial activity</td>
</tr>
<tr>
<td>Povidone iodine</td>
<td>Antiseptic</td>
<td>Varies depending on concentrations[108]</td>
<td>Inhibits development of new biofilm[110]</td>
<td>Modulates redox potentials and enhances angiogenesis, thereby promoting healing[73]</td>
</tr>
</tbody>
</table>

WHAT TO CLEAN WITH?

- Dakin’s Solution 0.125 %
 - Dilute hypochlorite (bleach) solution that shows effectiveness against Gram-positive bacteria such as strep and staph, as well as a broad spectrum of anaerobic organisms and fungi.
 - Kills microorganisms, but also harms healthy cells in all concentrations
 - It can be sprayed on the wound, poured as a wound irrigant or used in a wet compress.

- Acetic Acid (Vinegar Solution)
 - Shown effectiveness against many Gram-positive and Gram-negative organisms, especially Pseudomonas aeruginosa.
 - Does not kill bacteria, creates an acidic environment unfavorable for bacterial growth.
 - Acetic acid in 1% and 5% concentrations has been widely used in an attempt to reduce pH.
 - Effective against odor
WHAT TO CLEAN WITH?

- Hydrogen peroxide
 - One time cleansing for dirty acute injury may be appropriate
 - May be cytotoxic to healthy cells and granulating tissue
 - Ineffective in reducing bacterial counts in vivo; in vitro evidence of effectiveness
 - Effervescence visually changes wound surface
Surfactant Dressings and Gels

- Dressings containing non-ionic surfactants that cleanse wound at microscopic level
- New evidence of anti-biofilm properties
- Local cleansing – “scrubbing bubbles”
SURFACTANTNCY EFFECT

- Monomers line up along an aqueous environment with hydrophilic head / hydrophobic tail
- In higher concentrations form a micelle matrix which is surface active, constantly expanding and contracting creating a “rinsing” action on a molecular level.
- Disrupts non covalent bonds. Softens, loosens and traps the wound debris.
- Solubilizes debris at cellular level
SURFACTANT ENHANCED AUTOLYTIC DEBRIDEMENT

12/04/18
Concentrated surfactant + ABX

12/14/18
AND LASTLY... SCALES
WHO THINKS THAT THERE IS BACTERIA UNDER THESE DRIED SCALES?
REMOVE SCALES, REDUCE BACTERIA

Photos courtesy Kevin Woo, RN, PhD
Descaling Hyperkeratotic Skin
CLOSING OUT ON CLEANSING......

- Begin with the end in mind (Covey)
- Base cleansing on wound appearance and presumption of bioburden – Clean or disinfect?
- Base decisions on risk-benefit analysis

THANK YOU!